De novo synthesis of trans-10, cis-12 conjugated linoleic acid in oleaginous yeast Yarrowia Lipolytica

نویسندگان

  • Baixi Zhang
  • Chunchi Rong
  • Haiqin Chen
  • Yuanda Song
  • Hao Zhang
  • Wei Chen
چکیده

BACKGROUND Conjugated linoleic acid (CLA) has many well-documented beneficial physiological effects. Due to the insufficient natural supply of CLA and low specificity of chemically produced CLA, an effective and isomer-specific production process is required for medicinal and nutritional purposes. RESULTS The linoleic acid isomerase gene from Propionibacterium acnes was expressed in Yarrowia lipolytica Polh. Codon usage optimization of the PAI and multi-copy integration significantly improved the expression level of PAI in Y. lipolytica. The percentage of trans-10, cis-12 CLA was six times higher in yeast carrying the codon-optimized gene than in yeast carrying the native gene. In combination with multi-copy integration, the production yield was raised to approximately 30-fold. The amount of trans-10, cis-12 CLA reached 5.9% of total fatty acid yield in transformed Y. lipolytica. CONCLUSIONS This is the first report of production of trans-10, cis-12 CLA by the oleaginous yeast Y. lipolytica, using glucose as the sole carbon source through expression of linoleic acid isomerase from Propionibacterium acnes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid

BACKGROUND Conjugated linoleic acid (CLA) has been extensively studied for decades because of its health benefits including cancer prevention, anti-atherogenic and anti-obesity effects, and modulation of the immune system. We previously described the production of trans-10, cis-12 CLA in Yarrowia lipolytica by expressing the gene coding for linoleic acid isomerase from Propionibacterium acnes (...

متن کامل

Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica.

In the oleaginous yeast Yarrowia lipolytica, de novo lipid synthesis and accumulation are induced under conditions of nitrogen limitation (or a high carbon-to-nitrogen ratio). The regulatory pathway responsible for this induction has not been identified. Here we report that the SNF1 pathway plays a key role in the transition from the growth phase to the oleaginous phase in Y. lipolytica. Strain...

متن کامل

Production of Palmitoleic and Linoleic Acid in Oleaginous and Nonoleaginous Yeast Biomass

We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, and Candida sp.) and traditional biotechnological nonoleaginous ones (Kluyveromyces polysporus, Torulaspora delbrueckii, and Saccharomyces cerevisiae) as potential producers of dietetically important major fatty acids....

متن کامل

Comprehensive Metabolomic, Lipidomic and Microscopic Profiling of Yarrowia lipolytica during Lipid Accumulation Identifies Targets for Increased Lipogenesis

Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches a...

متن کامل

Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes.

Conjugated linoleic acid (CLA) reduces adiposity in vivo. However, mechanisms mediating these changes are unclear. Therefore, we treated cultures of human adipocytes with trans-10, cis-12 (10,12) CLA, cis-9, trans-11 (9,11) CLA or other trans fatty acids (FA), and measured indices of lipid metabolism. The lipid-lowering effects of 10,12 CLA were unique, as other trans FA did not reduce TG conte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012